Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells.

نویسندگان

  • Chunhui Xu
  • Shailaja Police
  • Namitha Rao
  • Melissa K Carpenter
چکیده

Cell replacement therapy is a promising approach for the treatment of cardiac diseases, but is challenged by a limited supply of appropriate cells. We have investigated whether functional cardiomyocytes can be efficiently generated from human embryonic stem (hES) cells. Cardiomyocyte differentiation was evaluated using 3 parent (H1, H7, and H9) hES cell lines and 2 clonal (H9.1 and H9.2) hES cell lines. All cell lines examined differentiated into cardiomyocytes, even after long-term culture (50 passages or approximately 260 population doublings). Upon differentiation, beating cells were observed after one week in differentiation conditions, increased in numbers with time, and could retain contractility for over 70 days. The beating cells expressed markers characteristic of cardiomyocytes, such as cardiac alpha-myosin heavy chain, cardiac troponin I and T, atrial natriuretic factor, and cardiac transcription factors GATA-4, Nkx2.5, and MEF-2. In addition, cardiomyocyte differentiation could be enhanced by treatment of cells with 5-aza-2'-deoxycytidine but not DMSO or retinoic acid. Furthermore, the differentiated cultures could be dissociated and enriched by Percoll density centrifugation to give a population containing 70% cardiomyocytes. The enriched population was proliferative and showed appropriate expression of cardiomyocyte markers. The extended replicative capacity of hES cells and the ability to differentiate and enrich for functional human cardiomyocytes warrant further development of these cells for clinical application in heart diseases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Cardio Gel and Matrigel on the Ultrastructure of Cardiomyocytes Derived From Mouse Embryonic Stem Cells

Purpose: To investigate the effect of cardiogel and matrigel on the ultrastructure of embryonic stem cell-derived cardiomyocytes. ECM: Extracellular Matrix derived from cardiac fibroblasts (cardiogel), commercial extracellular matrix (matrigel) and control group (without ECM) were cultured for up to 21 days. Ultrastructural properties of cardiomyocytes were evaluated by transmitting electron mi...

متن کامل

Embryonic stem cells derived cardiomyocytes are a suitable model for assessment of cardiotoxic effects of doxorubicin and other drugs

Introduction: Doxorubicin is frequently used for treatment of several types of cancer. Doxorubicin cardiac toxicity has limited the use of this drug. Corticosteroids may prevent doxorubicin induced cardiotoxicity. Therefore the aim of this study was to evaluate mouse embryonic stem cells derived cardiomyocytes as a model to evaluate the effect of Doxorubicin and dexamethasone. Methods: Mouse ...

متن کامل

Evaluation of Chronotropic Properties of Mouse Embryonic Stem Cells-Derived Cardiomyocytes After Fibroblast Growth Factor Treatment

Purpose: We investigated the effect of (bFGF) (basic-Fibroblast Growth Factor) on the differentiation of divided cardiomyocytes from mouse embryonic stem cells (ES) and their pharmacological properties. Materials and Methods: The mouse embryonic stem cells (Royan B1) were cultured as 800 cells per 20µl of a hanging drop. After two days, ES cells in each drop aggregated to form embryoid bodies ...

متن کامل

Comparison of BAX and Bcl-2 Expression During Human Embryonic Stem Cell Differentiation into Cardiomyocytes and Doxorubicin-induced Apoptosis

Back ground: Although the cell differentiation is an inseparable part of development in multicellular organisms, the regulating molecular pathway of it still is not fully defined. In the other hand, apoptosis is a fundamental physiological process which plays an essential role in a variety of biological events during development. Moreover, recent studies have found that apoptosis shows several ...

متن کامل

Exosomes Secreted by Normoxic and Hypoxic Cardiosphere-derived Cells Have Anti-apoptotic Effect

Cardiosphere-derived cells (CDCs) have emerged as one of the most promising stem cell types for cardiac protection and repair. Exosomes are required for the regenerative effects of human CDCs and mimic the cardioprotective benefits of CDCs such as anti-apoptotic effect in animal myocardial infarction (MI) models. Here we aimed to investigate the anti-apoptotic effect of the hypoxic and normoxic...

متن کامل

Exosomes Secreted by Normoxic and Hypoxic Cardiosphere-derived Cells Have Anti-apoptotic Effect

Cardiosphere-derived cells (CDCs) have emerged as one of the most promising stem cell types for cardiac protection and repair. Exosomes are required for the regenerative effects of human CDCs and mimic the cardioprotective benefits of CDCs such as anti-apoptotic effect in animal myocardial infarction (MI) models. Here we aimed to investigate the anti-apoptotic effect of the hypoxic and normoxic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Circulation research

دوره 91 6  شماره 

صفحات  -

تاریخ انتشار 2002